Sombrio-Beach-Golden-Hour Ocean TJ Watt

The ocean’s ability to absorb carbon could make or break a net-zero future

Research suggests oceans can reduce net emissions and help us get to net zero faster so long as we don't limit its ability to absorb our excesses
This article was originally published on The Conversation.

Most of us growing up along Canada’s East Coast never worried about hurricane season. Except for those working at sea, we viewed hurricanes as extreme events in remote tropical regions, seen only through blurred footage of flailing palm trees on the six o’clock news.

Today, a warming ocean spins hurricanes faster, makes them wetter and drives them towards Atlantic Canada and even further inland. Hurricanes, winter storms and rising sea levels will continue to worsen unless we slow climate change.

The lifeblood of coastal economies and societies has always been the connection between land and sea, and that’s become more evident with climate change. But this isn’t just a coastal story anymore.

The oceans moderate the world’s climate through the absorption of heat and carbon. And just how much carbon the ocean will continue to absorb for us remains an open question. Whatever we do, it must be grounded in our growing wisdom of the deep connections between life on land and in the sea.

As Canada commits to a net-zero future and plans its post-COVID economic recovery, innovations and investments could backfire if they reduce the ocean’s ability to absorb our excesses.

Links between land and sea

The ocean has always directly affected the climate on land. The well-being of communities across the globe is directly linked to the ocean’s capacity to continue its regulating role of heat and carbon cycles.

Drought in the Prairies is tied to water temperatures in the Atlantic and Pacific oceans. When temperatures are most extreme, they signal the possible arrival of a “megadrought.”

In Australia, the occurrence of below-average rainfall, lasting several years, can be predicted by high Indian Ocean temperatures. This dries soils and lowers river flows, resulting in major community impacts such as water restrictions, declines in agricultural production and increased frequency of bushfires.

The success of Canada’s climate policies will therefore hinge on understanding how ocean processes are changing and society responds. The opportunity is at hand: Canada has committed to net-zero carbon in 2050, and to economic recovery once the COVID-19 pandemic has passed.

The federal government’s throne speech in September highlighted the oceans as critical to economic recovery post-COVID. The “blue economy,” mentioned in the throne speech, includes fisheries, aquaculture and offshore wind energy.

These two commitments are fundamentally linked: economic recovery and carbon neutrality both depend on the ocean’s ability to continue to regulate climate through heat and carbon absorption.

But the development of national policies on climate change, both in Canada and internationally, has generally ignored the ocean in climate calculations.

Scientists lobbied intensely before the Paris Climate Agreement just to make sure the ocean was mentioned.

Read more: Blue carbon: the climate change solution you’ve probably never heard of

Enormous waves crash against the rocks on the shore of Sombrio Beach

The ability of the ocean to absorb heat and carbon changes over time and its role in moderating the effects of climate change needs to be better understood. Photo: TJ Watt

Changes to the ‘carbon sink’

We dare not further neglect the most important global storage depot on Earth: the ocean stores hundreds of times the heat and 50 times more carbon than the atmosphere, and takes up more carbon than all the rainforests combined.

Ocean carbon and heat absorption also provide a critical natural timescale against which we can measure our effectiveness in battling climate change. Fluctuations in the ocean “carbon sink” — the amount of carbon the ocean can remove from the atmosphere — will change the urgency with which we need to act.

For example, a waning carbon sink shrinks our window to curb land-based carbon emissions. But a growing sink might give us more time to enact difficult but necessary carbon policies that will have disruptive economic consequences.

There is no time for delay, and rewards come quickly; strong scientific evidence demonstrates that ocean processes controlling this absorption can either weaken or strengthen measurably in just a few decades.

Heat is absorbed physically from the atmosphere and mixed through the ocean on the scales of millennia. But carbon is absorbed through a complex network of chemical and biological processes, including coastal ecosystems such as kelp, mangroves and seagrasses that sustain local economies. Plankton (the tiny plants and animals that feed everything from mussels to whales) store carbon, so their behaviour and biology become a critical factor in the climate discussion.

We urgently need better observations of the ocean’s continued role as our heat and carbon sink.

Read more: How a salt marsh could be a secret weapon against sea level rise in B.C.’s Fraser delta

Shifting carbon sink

The North Atlantic Ocean is the most intense carbon sink in the world: 30 per cent of the global ocean’s carbon dioxide removal occurs right in Canada’s backyard. If we extend Canada’s net-zero calculation to our exclusive economic zone (waters within 200 nautical miles of our coast), our net carbon emissions could change significantly.

Current estimates suggest including the oceans would reduce net emissions and help us get to net zero faster, but what happens if that changes? We must understand fully the processes controlling the “sink” to make the right climate policy choices.

Read more about the role of natural landscapes in the fight against climate change in The Narwhal’s Carbon Cache series.

This recalculation could shift our thinking on how to rejuvenate the Canadian economy. Investment in controversial industries such as deep-sea mining, which can supply materials needed for renewable ocean-based energy technologies like those used in offshore wind, can at the same threaten the very ocean ecosystems and food systems on which we depend. Formulating effective policies in the face of these uncertainties is a major challenge. Our path forward must build on our growing understanding of the deep connections between societal and ocean well-being.

Canadian researchers, including those at the Ocean Frontier Institute where we are based, are poised to address the fundamental questions about the ongoing role of the ocean in absorbing carbon, and to help develop appropriate policies. These conversations cut across traditional academic boundaries. In the past, ocean research was separated into the natural and applied, the social and human sciences. Now, we all need to work together.

The role of the ocean has been neglected for too long and must be drawn to the centre of the carbon discussion as we plot our trajectory to net-zero carbon in 2050. Canada’s carbon policies can lead the way internationally if they are grounded in strong, and strongly integrated, natural and social sciences. It is time for the research community to step up in their support.

We’ve got big plans for 2024
Seeking out climate solutions, big and small. Investigating the influence of oil and gas lobbyists. Holding leaders accountable for protecting the natural world.

The Narwhal’s reporting team is busy unearthing important environmental stories you won’t read about anywhere else in Canada. And we’ll publish it all without corporate backers, ads or a paywall.

How? Because of the support of a tiny fraction of readers like you who make our independent, investigative journalism free for all to read.

Will you join more than 6,000 members helping us pull off critical reporting this year?
We’ve got big plans for 2024
Seeking out climate solutions, big and small. Investigating the influence of oil and gas lobbyists. Holding leaders accountable for protecting the natural world.

The Narwhal’s reporting team is busy unearthing important environmental stories you won’t read about anywhere else in Canada. And we’ll publish it all without corporate backers, ads or a paywall.

How? Because of the support of a tiny fraction of readers like you who make our independent, investigative journalism free for all to read.

Will you join more than 6,000 members helping us pull off critical reporting this year?

Agriculture has historically ravaged wetlands. These farmers are trying to change that

The way it’s raining over the Guilford Hereford ranch, you’d hardly know there’s a drought. “An April rain is invaluable to me, because that’s what...

Continue reading

Recent Posts

Thousands of members make The Narwhal’s independent journalism possible. Will you help power our work in 2024?
Will you help power our journalism in 2024?
… which means our newsletter has become the most important way we connect with Narwhal readers like you. Will you join the nearly 90,000 subscribers getting a weekly dose of in-depth climate reporting?
A line chart in green font colour with the title "Our Facebook traffic has cratered." Chart shows about 750,000 users via Facebook in 2019, 1.2M users in 2020, 500,000 users in 2021, 250,000 users in 2022, 100,000 users in 2023.
… which means our newsletter has become the most important way we connect with Narwhal readers like you. Will you join the nearly 90,000 subscribers getting a weekly dose of in-depth climate reporting?
A line chart in green font colour with the title "Our Facebook traffic has cratered." Chart shows about 750,000 users via Facebook in 2019, 1.2M users in 2020, 500,000 users in 2021, 250,000 users in 2022, 100,000 users in 2023.
Overlay Image